204

References

20. Gosline, J. M., Guerette, P. A., Ortlepp, C. S., & Savage, K. N. (1999). The mechanical design

of spider silks: From fibroin sequence to mechanical function. Journal of Experimental Biology,

202(23), 3295–3303.

21. Greenwalt, C. H. (1960). The wings of insects and birds as mechanical oscillators. Proceedings

of the American Philosophical Society, 104, 605.

22. Haas, F., Gorb, S., & Blickhan, R. (2000). The function of resilin in beetle wings. Proceedings

of the Royal Society of London B: Biological Sciences, 267(1451), 1375–1381.

23. Hagstrum, J. T. (2000). Infrasound and the Avian navigational map. The Journal of Experi-

mental Biology, 203, 1103–1111.

24. Thorp, K., & Holand, R. A. (2009). The bird GPS-long range navigation in birds. Journal of

Experimental Biology, 212.

25. Lighthill, M. J. (1973). On the Weis-Fogh mechanism of lift generation. Journal of Fluid

Mechanics, 60(01), 1–17.

26. Magnan, A. (1934). Law Locomotion Chez Lessanimacs. 1 Le Vol. Des insectes Paris, Herman.

27. Mani, M.S. (1988). General Entomology (3rd Ed.). Oxford & IBH Publishing.

28. Mountcastle, A. M., & Combes, S. A. (2014). Biomechanical strategies for mitigating collision

damage in insect wings: Structural design versus embedded elastic materials. The Journal of

experimental biology, 217(7), 1108–1115.

29. Chernetsov, N. S. (2012). Orientation and navigation of birds. Biological Bulletin, 43(8), 788–

803. Compasses (4) and Maps (6), Original Russian.

30. Norberg, R. Å. (1972). Evolution of flight in insects. Zoologica Scripta, 1(5), 247–250.

31. Norberg, R. Å. (1975). Hovering flight of the dragonfly Aeschna juncea L., kinematics and

aerodynamics. In Swimming and flying in nature (pp. 763–781). Springer.

32. Norberg. (1990). Vertebrate flight mechanics, morphology, ecology and evolution. Springer.

33. Osborne, M. F. M. (1951). Aerodynamics of flapping flight with application to insects. Journal

of Experimental Biology, 28(2), 221–245.

34. Groves, P. D. (2013). Principles of GNSS, Inertial, and Multisensor Integrated Navigation

Systems. Artech House.

35. Treherne, J. W. L., J. E., & Wigglesworth, V. B. (Eds.), Physiology (Vol. 2, pp. 1–66). Academic

Press.

36. Pines, D. J., Bohorquez, F. A., & Sirohi, J. (2005). Biomimetic mechanism for micro aircraft.

DC: U.S. Patent and Trademark Office 6, 938, 853, issued September 6.

37. Pornsin-Sirirak, T. N., Tai, Y. C., Nassef, H., & Ho, C. M. (2001). Titanium-alloy MEMS wing

technology for a micro aerial vehicle application. Sensors and Actuators A: Physical, 89(1),

95–103.

38. Prandtl, L. (1979). Applications of modern hydrodynamics to aeronautics. Classical Aerody-

namic Theory, 1050.

39. Misra, P., Enge, P. (2006). Global positioning system: signals, measurements, and performance

(2nd ed.). Ganga-Jamuna Press.

40. Puranik, P. G., Gopalkrishna, G., Ahmed, A., & Chari, N. (1977). Wing beat frequency of

a flier—Mass Flow Theory. Proceedings of the Indian Academy of Sciences Section A., 85,

327–339. Bio-Physics of bird flight (Bio-aerodynamics) (5th ed.).

41. Puranik, P. G., & Chari, N. (1986). Bio-aerodynamics of fliers. National Book Enterprises.

42. Rao, G., Janaiah, C., Chari, N., & Ahmad, A. (1987). Aerodynamic Parameters of a Blister

Beetle Mylabris-Pustulata. Entomon, 12(2), 157–159.

43. Rebeiz, G. M., & Tan, G. L. (2003). Introduction: RF MEMS for microwave

44. Wiltschko, R., & Wiltschko, W. (2009). Avian navigation. International Journal of Ornithology,

126(4).

45. Rozhdestvensky, K. V., & Ryzhov, V. A. (2003). Aerohydrodynamics of flapping-wing

propulsors. Progress in Aerospace Sciences, 39(8), 585–633.

46. Sarajlic, E., De Boer, M. J., Jansen, H. V., Arnal, N., Puech, M., Krijnen, G., & Elwenspoek,

M. (2005). Bulk micromachining technology for fabrication of two-level MEMS in standard

silicon substrate. In Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical

Papers. TRANSDUCERS’05. The 13th International Conference on (Vol. 2, pp. 1404–1405).

IEEE.